
Final Race Challenge

Tareq Dandachi, Mikey Peña, Daniel Kuang
Steven Goldy, Tom Benavides

February 6, 2022

1

Table of Contents

1 Introduction 3

2 Technical Overview 4

3 Technical Approach - Race Course 4

3.1 Interoceptive Sensors . 5

3.2 Race Course Algorithm . 8

3.2.1 Path Planning . 8

3.2.2 Pure Pursuit . 9

3.2.3 PID Controller . 10

4 Fast Obstacle Avoidance 11

4.1 Exteroceptive Sensors . 11

4.2 Processing Sensor Data . 12

4.3 The Fast Obstacle Avoidance Algorithm 14

4.4 The PID Controller . 16

5 Experimental Evaluation 16

5.1 Race Course . 17

5.2 Fast Obstacle Avoidance . 18

6 Conclusion 18

6.1 Future Work . 18

6.2 Lessons Learned . 19

7 Acknowledgements 20

2

1 Introduction

Author: Steven Goldy

Editors: Daniel Kuang

The goal of Robotic Science and systems (RSS, 6.141/16.405) is to develop
an autonomous robot to compete in a race. The original plan was to develop
and test software to be used on the RACECAR hardware platform and race in
the basement of the Stata Center or the Indoor track. Due to the unfortunate
circumstances surrounding COVID-19 the competition needed to be moved on-
line. To accommodate this shift, the fantastic group of RSS teacher’s assistants
created a racing simulation using Lincoln Labs’ Tesse framework. Tesse was
developed in the well known Unity 3D game engine and offered a wide array of
features. A full suite of sensors and cameras complete with noise and realistic
driving dynamics made this simulated competition more interesting. While the
code was a little too intense for some machines to run, the photo-realistic graph-
ics made the competition interesting. The races were conducted on a closed city
scene complete with lane lines, poles and guardrails. To equalize the hardware
being used, all cases were run on the MIT Lincoln Lab Supercloud cluster.

The final challenge was divided into two parts: a timed race course and
an obstacle avoidance course. The objective of both challenges was to complete
the course in the fastest time possible while minimizing collisions. Head-to-
head racing was out of the scope of the class so each component was assigned
a scoring function to determine the top competitors. In both parts we utilized
skills and algorithms developed in previous labs. These modules include, a
safety controller, wall following, Monte Carlo Localization, path planning and
computer vision. Both challenges did not use all of the components and not in
the same way. The goal of the race circuit was to develop a robot that could
find itself in an environment then efficiently navigate to a known destination.
This exercise tests many difficult facets of robotics, their coordination, and gives
insight into potential advances in the field. The goal of the obstacle avoidance
portion was to develop a robot that could navigate safely through a crowded
unknown environment.

Both of these tasks are important to the field of robotics and autonomous
vehicles because they prove capability for agents to operate in urban environ-
ments. Using on board sensors, a rudimentary knowledge of the environment,
and a great deal of tuning, cars can be developed to traverse a city with no
collisions.

3

2 Technical Overview

Authors: Steven Goldy

Editors: Mikey Penña

As this is a final project, we made the design decision to adapt our existing
code to the new environment, tune parameters to the specific races and optimize
for speed. The idea is each of the modular labs would fit into the new final
system and create an autonomous system. We approached the two parts of the
challenge with a different combination of modules.

For the race course portion we planned to use our particle filter localization
method from Lab 5 to provide an up to date position of the robot. With this
information, we intended to have the robot to calculate a path to an intermediate
milestone or the finish line using the A* path planning algorithm from Lab 6.
Once it had a trajectory, the robot would use the pure pursuit controller also
from Lab 6. To avoid collisions and trigger a restart in calculations, we planned
to run the safely controller from Lab 3.

But, after examining the Tesse simulator and receiving recommendations
from the teaching staff, we made the design decision to forego path planning
and simply use a predefined trajectory. We could do this because the race was
conducted on a predefined closed course. This defined trajectory enabled us to
further optimize for speed and computational efficiency.

For the obstacle avoidance portion we decided to leverage the open-endedness
of the challenge and the sensors on the simulated car to create an innovative
machine vision solution. This was a difficult design decision because of a lack of
familiarity with using camera data and technical difficulties with receiving the
data from the simulator. In the end we were able to process the segmentation
and depth camera data, apply a birds eye view filter and then use a modified
version of the wall follower algorithm. The controller worked by finding the
middle of the road based on the color data from the segmentation camera and
using that as a “wall” for the robot to track.

3 Technical Approach - Race Course

Author: Mikey Peña, Daniel Kuang, Tom Benavides

Editors: Steven Goldy

The following sub-sections outline the details of sensors, control algorithms,
and integration methods used for the final race.

4

3.1 Interoceptive Sensors

In the end, our race course algorithm only depended on the odometry pro-
vided by our Monte Carlo localization algorithm. The Monte Carlo localization
algorithm projects the car into many particles each with their own different
position and orientation. Then using each particle, it compares its hypothetical
LIDAR beams with the actual LIDAR beams collected from the car’s LIDAR
sensors. The Monte Carlo localization algorithm will then keep the most prob-
able odometry.

Figure 1: The Monte Carlo Localization (MCL) algorithm in action. Notice
how the first particle (one possible odometry of the car) is eliminated because
its lidar beams (the green shape) is ruled as unlikely. The middle particle will
be ruled as most probable, hence it’ll be kept as the most probable odometry.

Our implementation only depended on the provided x and y coordinates,
but not the orientation. Since we encountered difficulties in receiving the correct
orientation of our car due to map offsets, we decided to calculate our car’s
orientation with three points: the closest point on the trajectory, the goal point
toward which the car will approach and the global position of the car relative
to the map frame.

Figure 2: A visualization of the closest point on the trajectory (marked purple),
the goal point (marked green) and the global position of the car (marked yellow).

5

The orientation we calculated with the closest point, the goal point and
the car’s coordinate was the angle between the vector from the car to the goal
point and the vector from the goal to the closest point. The reason we want
this angle is the pure pursuit algorithm. The pure pursuit algorithm needs the
car’s orientation to calculate the perpendicular distance from the car to the goal
point:

Figure 3: A visualization of the perpendicular distance of the car to the goal
point. The goal point is colored green and the perpendicular distance is labeled
as X colored in orange

The perpendicular distance is necessary for the curvature equation, which
is used to calculate the steering angle of the car to remain close to the trajectory.
Lcar−close is the distance from the car to the closest point on the trajectory and
Lgoal−car is the distance from the goal to the car.

δ = tan−1(Lgoal−car/R)

γ =
2 ∗ Lcar−close

L2
goal−car

R =
1

γ

Our trajectory is composed of line segments concatenated together. Hence,
if we visualize the triangle with the goal point, closest point and car’s coordinate
as vertices, we will see that it’s a right triangle:

6

Figure 3.5: A visualization of the closest point, the goal point and the car’s
position connected as a triangle. Note the closest point is coined as ”closest”

because the closest point on the trajectory from the car’s position is defined to
be the perpendicular line connecting the segment to the car’s position

We simply calculate the perpendicular distance with the euclidean distance
formula: Pdist =

√
(carX − closeX)2 + (carY − closeY)2 where (carX, carY)

is the 2D coordinate of the car and (closeX, closeY) is the 2D coordinate of the
closest point. The problem is we don’t know the sign of the distance. The sign
of the distance is necessary to determine which side the car should turn around.

To determine which side the car should turn around, we take the sign of
the cross product of the vector goal-close and the vector goal-car. We applied a
right handed convention to define the desired angle x in figure 3.5. So depending
on the direction of the turn we have positive ẑ angle vector or a negative ẑ angle
vector.

If the ẑ angle vector is positive, the car is to the right of the trajectory as
indicated in figure 3.5. This is true no matter where the trajectory is positioned.
To get the car to steer left (back to the trajectory), its angle needs to be negative.
As of now, the sign of the cross product of the goal-close and goal-car vectors
is positive (since the thumb is pointing out of the paper). Hence, we multiply
the sign of the cross product of goal-close vector and goal-car vector by -1 to
get the desired sign. A symmetric argument applies if the car is to the left of
the trajectory.

Now we have the correct steering angle magnitude and sign to command
the car to steer to its trajectory correctly.

7

3.2 Race Course Algorithm

3.2.1 Path Planning

The intent was to have our A* algorithm to predict the shortest path to
the goal. The A* algorithm also needs to account for the fact that the car needs
to travel the whole course.

Note the green point is the start and blue point is the goal. The car must
follow the red path before reaching its goal.

If we ran A* at the start of the race, the shortest path would be the purple
path, which is illegal. An alternative to using A* is creating the trajectory with
trajectory builder.py from path planning lab (lab 6). Then, once the car loads
on the simulator, it will take the given path and follow it.

An advantage of selectively choosing a path is how we avoid complications
from avoiding shortcuts potentially found by A*. In addition, we save time from
the potential overhead from running A*.

Thus, we decided to forgo A* and worked on fine-tuning our pure pursuit
algorithm to follow our built path.

8

3.2.2 Pure Pursuit

Recall the objective of pure pursuit is to calculate the steering angle for the
car to reach its goal or lookahead point along an arc (figure 2). If we prevent
the car from recalculating its new lookahead point, the car will smoothly reach
to its current lookahead point along an arc. If we have the lookahead point to
keep updating until the lookahead point is the endpoint of a trajectory, the car
will essentially be following its provided path. The nature of this algorithm is
akin to the carrot-and-stick principle.

Due to the map offset of the simulator, our car was unable to receive its
orientation. We resolved this issue under the above section ”Interoceptive Sen-
sors.” However, there was another issue, and it’s regarding the fact that there
are overlapping line segments at certain parts of the race.

When the car reaches the region in the blue circle, its closest point will be
ambiguous. The car is programmed to calculate the closest line segment and
the closest point. However, due to noise, the car can skip or repeat sections of
the course depending on what the car believes as its closest point. During the
race, since we did not notice this flaw, our car either skipped the loop or stayed
on the loop (the loop is circled with a brown circle).

Fortunately, we noticed this error on our second try of the race course.
Hence, our implemented solution is to have the car keep track of the current
line segment it is on. In addition, we restrict the car to seeing only three line
segments ahead of the line segment it is on now. Hence, to the car, it never

9

notices an overlap on any line segment during its completion of its provided
trajectory.

3.2.3 PID Controller

The final step of the pure pursuit algorithm was to include a PID controller
in the steering angle and speed calculations, so that the race car’s path-following
behavior could be tuned in simulation. The car’s speed only required an addi-
tional derivative control, whereas we included a full PID algorithm to tune the
car’s steering angle, which was more impactful in keeping the race car on the
path and completing the course.

The parameters for the PID algorithms were determined one component at
a time, tuning the values with a binary search. We first tuned the proportional
component, then the derivative component, and finally the integral component
(when applicable for the steering angle calculation). If the car’s performance
became worse after tuning one component, we would then take a step back and
re-tune the previous components to account for the down-stream changes.

Moreover, our algorithm’s speed around corners also played a role in tuning
our PID controller. The PID controller naturally handles curves by using the
proportional gain to keep the car on track. The derivative gain corrects this a
bit by not allowing for large jumps in the turning angle. One thing we noticed
while testing is that the speed at which we took the turn had a large impact.
This intuitively makes sense, as if you are moving faster, then the algorithm
has less chances to get the right turning angle and thus would over or under
correct. Thus, when calculating speed, we took into account the curvature of
the upcoming section of the path. Our speed was then calculated as:

V = min(maxv,K/abs(curvature)

where V is the final speed, maxv is our pre-determined maximum speed around
the track on straights and K is a constant that we chose to tune the parameter.
In practice a K of 1-2 seemed to work best with our final value of 1.8.

10

4 Fast Obstacle Avoidance

Author: Tareq El Dandachi

Editors: Daniel Kuang

4.1 Exteroceptive Sensors

The Fast Obstacle Avoidance algorithm uses 3 main sensors: the segmen-
tation camera, the depth camera and the LIDAR. Both cameras are placed on
the front bumper of the car; They provide front facing, low-angle POV shots
with a wide angle of view as depicted in figure 4.

The segmentation camera emulates the output of a high accuracy convo-
lutional neural network (CNN) that segments the objects in the scene with
≈ 100% accuracy and colors them based on what the objects are. Figure 4(a)
shows the output where the road has a turquoise color, the pavement is pur-
ple, the concrete barriers are black, etc. The result from the CNN is a BGR
color space image (Blue-Green-Red matrix) similar to images you take with
your phone, where every objects is uniform in color and represents an object as
defined in a csv file that defines the color mapping.

The depth camera returns a grey image, i.e. every coordinate has one value
associated with it as opposed to BGR or HSVs’ three values. The color values
represent the distance between the camera and the object, the darker an object
is the closer the camera is (with the exception of the sky, which isn’t considered
an object). This can be seen in figure 4(b), where the building far away from
camera is much brighter than the obstacles and the road near the camera.

The LIDAR is also used to calculate distances from the objects but in a 1D
fashion. This is used for two main components of the algorithm, localization as
explained in the race course algorithm and a simpler distance triangulation for
the car that takes into account objects out of the view of the depth camera.

(a) Segmentation Camera (b) Depth Camera

Figure 4: Sample output from the cameras in different locations

11

4.2 Processing Sensor Data

The output from the cameras morphs the geometry of the image due to
its POV nature, two parallel lines pointing roughly in the direction of the car
appear to intersect, we need to apply a transformation that preserves the parallel
nature of these lines before processing. Figure 5 showcases the camera output
(b) and the desired output (c).

car

(a) Top View

(b) Camera Output (c) Camera Output After Transform

Figure 5: Application of the homography transform on an image to fix the
perspective of the camera on the road

Since our primary focus is the road in front of the car and not the sky, we
remove the top half of the image to remove the extra redundant information
and then apply a perspective shift using the homogrpahy transform as defined
in the previous paragraph. Examples of the transform can be seen in figure 6.

12

(a) Image 1 Before Transform (b) Image 1 After Transform

(c) Image 2 Before Transform (d) Image 2 After Transform

Figure 6: Examples of the homography transform applied to the output of the
segmentation camera (the recoloring can be ignored, its due to the conversion
between BGR to RGB)

After transforming the segmentation camera output, we create 4 separate
sub-images:

1. Floor Map, a small portion of the transformed image (10 pixels by 10
pixels) at its bottom that is used to detect what surface the car is on and
any changes in surfaces, this helps tell apart road intersection, pavements
and the road itself. It can also be used to detect super close collisions.

2. Front View, this portion has the same height as the image but the width
of the homography transform at the bottom of the image. This is used for
detecting straight on collisions and helps with identifying if a path straight
ahead is clear from obstacles.

3. Left View, everything to the left of the vertical center-line of the image, it
is used for detecting obstacles on the left of the car and deciding whether
deflecting to the left is a safe choice.

4. Right View, everything to the right of the vertical center-line of the image,
it has the same purpose as the left view.

Due to the highly discrete nature of segmentation, and the fact that the
number of objects, n that can be identified by the segmentation camera is
n � 2563 and also n � 256, then we know that forcing the image that has
3 bins of 256 values (a BGR image) have only 1 bin (a gray image) would not
cause us to lose any information stored in the segmentation but reduce the size
of the matrices by at least a factor of 3, making the algorithm faster and less
memory intensive.

13

The LIDAR data is also partitioned into 3 separate point clouds, they
represent the front, left and right of the car. Their construction is identical to
the segmentation image reconstruction, however, they contain no intersection
of readings and are 1 dimensional, since LIDAR is 1 dimensional.

4.3 The Fast Obstacle Avoidance Algorithm

At this point, all the sensor data is “meaningful”, as in it has been seg-
mented into separate useful components that can be added up to control the
car. The only shared part between the Fast Obstacle Avoidance algorithm and
Race Course algorithm is the localization module, which is used for locating the
car on the map and defining the robots position with respect to a start point
and an end point.

The Obstacle Avoidance algorithm has two types of points, local and global,
i.e. there is a local start point, local end point, global start point and a global
end point. The local ones are used for traversing a single path on the map, such
as a straight line connecting two intersecting roads on a turn-point, while the
global points represent the actual start point of the car on a map and where
it wants to reach. The localization module is used whenever turn-points on
the map are reached, these turn-points correspond to intersections on the map.
Whenever the car enters an intersection, the floor map segmentation can detect
an interface and can change the local start and end point of the algorithm so it
can traverse a segment on the map.

The local start and end points, ~ps and ~pe respectively, are joined by a line l
and the distance of the car’s center from the line l corresponds to an error value
ep. This error value is supposed to correct the angle of the wheels the robot
is using to get from ~ps to ~pe. In an ideal case where no obstacles are present,
a controller minimizing the ep value will force the robot to move in a direction
parallel to l with no deflections at all.

ep = κp
|(~ps − ~pe)× (~ps − ~pr)|

|(~ps − ~pe)|

To account for deflections based on objects surrounding the car, we have
more error parameters that go into our total error, et. The first of which is the
LIDAR error which is reserved for super close-by objects that might be in blind
spots that the segmentation camera might not see. The LIDAR error is defined
as el =

∑
f

(
κf
∑

x
1
x

)
, where x represents the closest LIDAR measurements in

a certain frame f from the LIDAR segmentation.

The most important error terms that correspond to the actual deflection of
the car are swerve error term, es, and the fixed deflection term, ed. The swerve

14

error term is defined as the difference in the number of pixels representing
obstacles in the left and right segment of the image, i.e.

es = κsµs

∑
c∈left

(1 ⇐= c is an obstacle)−
∑

d∈right

(1 ⇐= d is an obstacle)

This term is important since it accounts for the difference in (1) the number

of obstacles on the left and right side of the car and (2) how close the obstacles
are, since a closer obstacle stretches vertically more which means more pixels
represent it. This means the right and left components of es are each propor-
tional to the number of obstacles on that side and how close they are to the car.
The κs is the “swerve” coefficient, which dictates how much the error should
scale with the difference in pixels and µs is a normalizing coefficient that is
solely dependent on the resolution of the input image, since a higher resolution
image can give a much larger swerve and the system to become over responsive.

The ed term is a term that deflects the car by a constant amount κd based
on whether the average proximity of the car to other objects is past a certain
threshold γd.

ed =

κd if avg(x ∈ on the left of the car) > γd.

−κd if avg(x ∈ on the right of the car) > γd.

0 otherwise

We wanted to maximize the velocity of the car, while keeping it safe from
collisions. To do that we defined our speed v such that

v = vq min

1√
εf |
∑

x L| where x ∈ the closest 10 points

from the front LIDAR measurements

vq =

{
vf

√
1− εp|ep| if 1− εp|ep| > εn

vfµnεn otherwise

Where εf is a constant that scales the front lidar measurements such that
εf |
∑

x L| < 1, εp � 1 is a constant that scales the path offset error, this constant
helps overcome over steering into walls, 0 < εn < 1 is a cutoff for when the path
offset becomes large enough to need to be accounted for and µn > 1 is a scaling
coefficient that controls the effect of εn on velocity.

15

The fixed velocity vf used is set to 30ms−1 so that the car can drive at
high speeds and let the lowering of the speed be controlled by the other terms
st. the force applied to achieve a v that is 20 < v < 40 at all times.

4.4 The PID Controller

Now that we have an error signal et = ep +el +es +ed that accounts for the
deflection from the goal and the amount of obstacles the car can collide with,
we need a controller that accounts for this error. We settled on using a PID
controller, with a similar construction to that of the final race) that changes the
angle of the wheels α as follows:

α = kpet + ki

∫
etdt+ kd

det
dt

The only remaining task is tuning the whole system (algorithm + con-
troller). We tuned the algorithm by isolating separate subsystems, creating test
environments that suit them and tuning them alone on a P (proportional) con-
troller only, and modifying larger parameters when joining these subsystems.
For instance, to tune the path offset components, we had a path for it to follow
with no obstacles. For tuning the LIDAR errors, we turned off all components
and spawned the objects close to the car, out of the range of view of the cameras
and made sure no collisions happen. For tuning swerve errors, we had a course
filled with obstacles away from the car and modified the swerve such that it
can come close to the barriers without hitting walls while still giving it an open
window for more accurate control by another subsystem.

After tuning all the systems, we plugged them all into a PID controller
and tuned it using the heuristics defined in the Zeigler-Nichols method. This is
done by tuning the P controller separately, followed by the integral part then
the derivative part.

5 Experimental Evaluation

Author: Daniel Kuang

Editors: Mikey Peña

16

5.1 Race Course

Much of the time used for race course is spent on fine-tuning the PID con-
troller parameters for both the steering angle and speed of the car. The metric
for improvement is how much the car oscillates along its provided path and
whether or not it can complete the whole course.

Figure 7: Visualization of the car’s inability to complete the course. If this
occurs, we return to our PID controllers and continue fine-tuning

Our method of fine-tuning is as follows:

1. Fine-tune the parameter for the proportional component of PID with bi-
nary search

2. Fine-tune the parameter for the derivative component of PID with binary
search

3. Fine-tune the parameter for the integral component of PID with binary
search

If the results worsen, we take one step back before advancing onto the next
step. In the end, our optimal parameters are

kp = 0.095; kd = 2.5; ki = 0.0019

for the steering angle PID controller and

17

kp = 1.0; kd = 0.001

for the speed PID controller.

5.2 Fast Obstacle Avoidance

Improvements in the fast obstacle avoidance are similar because the fast
obstacle avoidance algorithm also uses a PID controller. In the end, the optimal
PID constants for the car’s steering angle are

kp = 0.7; ki = 0.01; kd = 0.02

6 Conclusion

Author: Steven Goldy

Editors: Tom Benavides

While we were not able to complete scoring runs of either challenge on the
live race stream, our race car still demonstrated impressive capabilities and later
completed both racing challenges. There are still a few shortcomings that we can
address, but we nonetheless developed a functional autonomous racing algorithm
capable of completing the course at fast speeds, even if it is inconsistent. The
computer vision obstacle avoidance algorithm was very innovative and effective,
and could be improved even more with further tuning. The localization and
pure pursuit methods in the final race were not perfect but still ensured a
safe trajectory most of the time. We have learned a great deal from the final
challenge as well as the class as a whole.

6.1 Future Work

The race is over but there are still ways for our system to be improved.
The next realm of challenges is to make the robot robust to new environments.
It is possible that we will refine our localization methods and maybe integrate
them with Google Cartographer to use Simultaneous Localization and Mapping
(SLAM). We would also like to integrate our CV obstacle avoidance work with
the pure pursuit algorithm to be able to more safely navigate novel and changing
environments. Lastly, the pure pursuit controller could be refined to support
greater speed and precision in a race scenario.

18

6.2 Lessons Learned

Tareq

This project was an opportunity to put everything we learned in RSS
together, from both the communication and the technical aspects of RSS.
The team dynamics have strengthened a lot and I feel confident in saying
I was able to blindly trust my teammates throughout these two weeks and
I wasn’t wrong. We ended up setting a lot of fires and I think most of
the credit can be attributed to trusting my teammates. This project also
involved a lot of creativity in terms of applying what we learned in RSS,
we ended up using material covered in all of the labs and had fun coming
up with new creative algorithms.

Mikey
On the technical side I learned how to integrate older code into a new
setting and adapt choices I made for one situation for another. On the
communications side, I learned how to use comments from other people
and older code to quickly understand what is going on and what might be
wrong.

Daniel
On the technical side, I learned how to flexibly apply PID controllers
to achieve a desired state in a different context. Before, I thought PID
controllers are used alone, but they complement well with other algorithms
like pure pursuit. On the communication side, I learned the importance
of maintaining contact despite how dire the situations seemed during the
race.

Goldy
On the communications side I learned the importance of taking notes
while you work. It is much easier to collect your thoughts to present
information when you have notes recorded than trying to delve into your
memory for what you did three weeks ago. On the technical side I learned
the importance of asking the right questions. I learned a great deal about
machine vision by googling the right questions and discussing with Tareq.

Tom
On the technical side, I learned the value of tackling challenges from dif-
ferent perspectives, and how small increases of algorithmic complexity can
cause large pay offs in performance. On the communication side I bet-
ter appreciated commenting code to improve working between different
people.

19

7 Acknowledgements

Thank you to the technical and communication teaching staff - your time
and expertise were much appreciated and we learned a great deal.

Thank you to the fantastic team of TA’s that answered our questions and
helped when things were falling apart

Special thanks to Marcus for taking the time to be our TA while still
developing the whole Tesse-ROS system

20

