$\vec r\times \vec F$torque's blog

🦾 Thanks Copilot!



Understanding Galois Fields: A Practical Guide

Introduction

Galois fields, also known as finite fields, play a crucial role in various areas of mathematics, cryptography, and coding theory. In this blog post, we’ll explore the basics of Galois fields, discuss their properties, and provide practical examples using Python.

What Are Galois Fields?

A Galois field is a finite set of elements with well-defined addition and multiplication operations. These fields have a finite number of elements, and arithmetic within them follows specific rules. The notation for a Galois field GF(p^n) indicates that it contains p^n elements.

Mathematical Expressions

1. Field Elements

Let’s create some Galois field elements using the Python package galois:

import galois

# Create a Galois field GF(31^1) with primitive polynomial x + 28
GF = galois.GF_factory(31, 1)

# Access the primitive element (alpha)
print(f"Primitive element: {GF.alpha}")

# Access the primitive polynomial
print(f"Primitive polynomial: {GF.prim_poly}")

The output will be:

Primitive element: GF31(3)
Primitive polynomial: Poly(x + 28, GF31)

Random snippet with an HH model example for spiking NN:

# Hodgkin-Huxley model

using DifferentialEquations
using Plots

# Potassium ion-channel rate functions
alpha_n(v) = (0.02 * (v - 25.0)) / (1.0 - exp((-1.0 * (v - 25.0)) / 9.0))
beta_n(v) = (-0.002 * (v - 25.0)) / (1.0 - exp((v - 25.0) / 9.0))

# Sodium ion-channel rate functions
alpha_m(v) = (0.182 * (v + 35.0)) / (1.0 - exp((-1.0 * (v + 35.0)) / 9.0))
beta_m(v) = (-0.124 * (v + 35.0)) / (1.0 - exp((v + 35.0) / 9.0))

alpha_h(v) = 0.25 * exp((-1.0 * (v + 90.0)) / 12.0)
beta_h(v) = (0.25 * exp((v + 62.0) / 6.0)) / exp((v + 90.0) / 12.0)

function HH!(du, u, p, t)
    gK, gNa, gL, EK, ENa, EL, C, I = p
    v, n, m, h = u

    du[1] = (-(gK * (n^4.0) * (v - EK)) - (gNa * (m^3.0) * h * (v - ENa)) -
             (gL * (v - EL)) + I) / C
    du[2] = (alpha_n(v) * (1.0 - n)) - (beta_n(v) * n)
    du[3] = (alpha_m(v) * (1.0 - m)) - (beta_m(v) * m)
    du[4] = (alpha_h(v) * (1.0 - h)) - (beta_h(v) * h)
end

2. Solving Equations

Suppose we have the following system of equations over GF(8):

[ 3x + 7y + 2z = 5 ] [ 7x + 3y + z = 5 ] [ 5x + 6y + 4z = 1 ]

We can represent this system as a matrix equation (Ax = b):

from galois import Matrix

A = Matrix(data=[[3, 7, 2], [7, 3, 1], [5, 6, 4]]).to_GF(8)
b = Matrix(data=[[5, 5, 1]]).transpose().to_GF(8)

augmented_matrix = A.join_with(b)
solution = augmented_matrix.get_reduced_echelon().submatrix(0, 3, 3, 1)

print("Solution:")
print(solution)

The program will print:

GF(8)[7]
GF(8)[5]
GF(8)[3]

Conclusion

Galois fields provide a powerful framework for solving equations, error correction, and cryptographic algorithms. By leveraging Python packages like “Galois,” you can explore these fields and apply them to real-world problems.

Feel free to customize this blog post with additional content, explanations, and examples. Happy blogging! 🚀

Randomize Theme

🎲

Theme     Changed!

🎨